
Data-Driven Workflows for Specifying and
Executing Agents in an Environment of

Reasoning and RESTful Systems

Benjamin Jochum, Leonard Nürnberg, Nico Aßfalg, and Tobias Käfer
uzebb@student.kit.edu, ujeng@student.kit.edu, uberq@student.kit.edu,

tobias.kaefer@kit.edu

Institute AIFB, Karlsruhe Institute of Technology (KIT), Germany

Abstract. We present an approach to specify and execute agents on
Read-Write Linked Data that are given as Guard-Stage-Milestone work-
flows. That is, we work in an environment of semantic knowledge repre-
sentation, reasoning and RESTful systems. For specifying, we present a
Guard-Stage-Milestone workflow and instance ontology. For executing,
we present operational semantics for this ontology. We show that de-
spite different assumptions of this environment in contrast to the tradi-
tional environment of workflow management systems, the Guard-Stage-
Milestone approach can be transferred and successfully applied on the
web.

The environment of the web is finally at a stage where hypermedia agents
could be applied [3]: We see that dynamic, open, and long-lived systems are
commonplace on the web forming a highly distributed system. For instance, mi-
croservices [13] build on the web architecture and provide fine-grained read-write
access to business functions. Moreover, Internet of Things devices are increas-
ingly equipped with web interfaces, see e. g. the W3C’s Web of Things effort1.
Furthermore, users’ awareness for privacy issues leads to the decentralisation
of social networks from monolithic silos to community- or user-hosted systems
like SoLiD2, which builds on the web architecture. The web architecture offers
REST [6], or HTTP3, respectively as uniform way for system interaction, and
RDF4 as uniform way for knowledge representation, where we can employ se-
mantic reasoning to integrate data. To facilitate agents in this environment called
Read-Write Linked Data [1], we need to embrace the web architecture and find a
suitable way to specify behaviour. As according to REST, the exchange of state
information is in the focus on the web, we want to investigate a data-driven ap-
proach for specifying behaviour. Moreover, data-driven approaches to workflow
modelling can be both intuitive and actionable, and hence are suited to a wide
range of audiences with different experience with information technologies [10].

1 https://www.w3.org/2016/07/wot-ig-charter.html
2 https://solid.mit.edu/
3 http://tools.ietf.org/rfc/rfc7230.txt
4 http://www.w3.org/TR/rdf11-concepts/

https://www.w3.org/2016/07/wot-ig-charter.html
https://solid.mit.edu/
http://tools.ietf.org/rfc/rfc7230.txt
http://www.w3.org/TR/rdf11-concepts/

2 Jochum, Nürnberg, Aßfalg, Käfer

Hence, we want to tackle the research question of how to specify and execute
agent behaviour in the environment of Read-Write Linked Data in a data-driven
fashion?

As the environment determines why different workflow approaches are used
in different circumstances [5], we need to look at the particularities of Read-Write
Linked Data, whose basic assumptions are fundamentally different from tradi-
tional environments where workflow technologies are applied, e. g. databases:

The absence of events in HTTP Of the many HTTP methods, there is no
method to subscribe to events. Hence, for our Read-Write-Linked-Data na-
tive approach, we rely on state data and to resort to polling to get informed
about changes in the environment.

Reasoning and querying under the Open-World Assumption While in
databases, typically the closed-world assumption is made, i. e. we conclude
from the absence of information that it is false, RDF is based on the open-
world assumption. Hence, we have to explicitly model all options.

Mitigation strategies would introduce complexity or restrict the generality of
our approach: The absence of events could, e. g., be addressed by (1) gen-
erating events from differences between state snapshots and to process these
events, which would add unnecessary complexity if we can do without. (2) as-
suming server implementations that implement change events using the Web-
Socket protocol, which would restrict the generality of our approach and, for
uniform processing, would require clear message semantics, which, in contrast to
HTTP, event-based systems do not have [6]5. The open-world assumption
could, e. g., be addressed by introducing assumptions such as negation-as-failure
once a certain completeness class [9] has been reached.

In previous work, we defined ASM4LD, a model of computation for the en-
vironment of Read-Write Linked Data [11], which allows for rule-based specifi-
cation of agent behaviour. Based on this model of computation, we provided an
approach to specify flow-driven workflows [12]. In contrast, we present a data-
driven approach in this paper. Hull et al. present the Guard-Stage-Milestone
(GSM) approach [10], which serves as basis for our work. While GSM builds on
events sent to a database, which holds the information model consisting in status
and data attributes, in our approach, distributed components with web inter-
faces that supply state information hold the information model. In contrast to
Pautasso, who presented an approach to retrofit REST into the BPEL approach
to workflow modelling [14], our approach rather retrofits a workflow modelling
approach into REST, here GSM.

Our approach consists in two main parts:

GSM Ontology We present an ontology to specify GSM workflows and in-
stances in the ontology language RDFS. Using this ontology, we can specify,
reason over, and query workflow models and instances at run-time.

5 Note that a client’s (polling, state-based) application logic can, without changes,
benefit from HTTP/2 server push (events): such specific events have been standard-
ised to allow a server to update a client’s cached state representations.

Data-Driven Workflows for Agents on Read-Write Linked Data 3

Operational Semantics We present ASM4LD rules to execute workflow in-
stances specified using our GSM ontology. To this end, we build on a Linked
Data Platform container6, i. e. a writable RESTful RDF data store, to store
the status attributes, i. e. workflow instances in our ontology.

The paper is structured as follows: In Section 1, we survey related work.
Next, in Section 2, we give basic definitions on which we build our approach.
Subsequently, in Section 3, we give an example, which we use in our explana-
tions. In Section 4, we present our main contributions. Next, we evaluate our
approach 5 by showing its correctness and performance. Last, in Section 6, we
conclude.

1 Related Work

Workflow Management Previous Workflow languages and also workflow man-
agement systems rely on events using Event-Condition-Action (ECA) rules,
e. g. [10, 2]. We base our approach on REST so there are no events to be pro-
cessed. Instead we use state machines as an operational semantics to track
the polled application state.

Web Services Web Services based on the WS-* standards, on which approaches
such as BPEL are built, allow for arbitrary operations. In contrast, REST
constrains this set [16, 19]. Thus, extensions for BPEL have been proposed
to include RESTful services [15, 14]. Our approach however exploits the
semantics of the constrained set of operations in REST.

Semantic Web Services OWL-S and WSMO mainly focus on descriptions of
services and reasoning to allow agents to compose web services. WS-*-based
semantic web services completely rely on events[8] while our approach is
based on REST where there are no events.

Scientific Workflows Previous Scientific Workflow approaches often set their
focus on the data flow between processes of a workflow[18, 7]. Our approach
however uses a data-driven approach for control flow.

Ontologies for Workflows In previous works, ontologies for describing work-
flows and processes have been developed, e. g. in various research projects
like Super, ASG, among others. Those ontologies require more expressive
reasoning or do not allow for execution.

Workflows in Linked Data In previous work, we developed WiLD to spec-
ify and execute flow-based behaviour descriptions in Linked Data [12]. In
contrast, in this paper, we investigate data-centric behavior descriptions.

2 Preliminaries

In this section, we introduce the technologies on which we build our approach.

6 http://www.w3.org/TR/ldp/

http://www.w3.org/TR/ldp/

4 Jochum, Nürnberg, Aßfalg, Käfer

2.1 The Hypertext Transfer Protocol (HTTP)

HTTP3 is a stateless application-level protocol, where clients and servers ex-
change request/response message pairs about resources that are identified using
Uniform Resource Identifiers (URIs)7 on the server. Requests are typed, and the
type (i. e. the HTTP method) determines the semantics of the request and the
optional message body. We make extensive use of the GET request to request a
representation of a resource, the PUT request to overwrite the representation of
a resource, and the POST request to append to an existing collection resource.

2.2 The Resource Description Framework (RDF) and SPARQL

RDF4 is a graph-based data model for representing and exchanging data based
on logical knowledge representation. In RDF, we represent data as triples that
follow the form subject, predicate, object. Such a triple defines a relation of type
predicate between graph nodes subject and object. Multiple triples form an RDF
graph. Things in RDF are identified globally using URIs7, or document-locally
using so-called blank nodes. Literals can be used to express values. In this pa-
per, we use the following notation for RDF: As triples encode binary predi-
cates, we write rdf:type(:si , :StageInstance) to mean the following triple in Tur-
tle notation8: <#si> rdf:type :StageInstance . Moreover, for the special case
of class assignments, we use unary predicates: That is, above triple becomes
:StageInstance(:si). SPARQL is a query language for RDF data9 and supports
a so-called ASK query that returns true if a condition holds in a RDF graph.

2.2.1 Abstract State Machines for Linked Data (ASM4LD) ASM4LD
is an Abstract State Machine based operational semantics given to Notation3, a
rule language for the semantic web [11]. In ASM4LD, we can encode two types
of rules: Derivation rules (to derive new knowledge) and request rules (which
cause HTTP requests). Moreover, ASM4LD supports RDF assertions. In [11],
we derived the operational semantics based on the semantics of HTTP requests,
first-order logic, and Abstact State Machines. The operational semantics can be
summarized in four steps to be executed in a loop, thus implementing polling:
1. Initially, set the working memory be empty.
2. Add the assertions to the working memory.
3. Until the fixpoint, evaluate on the working memory:

(a) Request rules from which HTTP-GET requests follow. For the rules
whose condition holds, make the HTTP requests add the data from the
responses to the working memory.

(b) Derivation rules. Add the thus derived data to the working memory.

7 http://tools.ietf.org/rfc/rfc3986.txt
8 Turtle allows for abbreviating URIs, where a colon separates the abbreviating prefix

from the local name. The example uses the empty prefix, which denotes http://

purl.org/gsm/vocab#. We refer to http://prefix.cc/ for other abbreviations.
9 http://www.w3.org/TR/sparql11-query/

http://tools.ietf.org/rfc/rfc3986.txt
http://purl.org/gsm/vocab##
http://purl.org/gsm/vocab##
http://prefix.cc/
http://www.w3.org/TR/sparql11-query/

Data-Driven Workflows for Agents on Read-Write Linked Data 5

Start fire alarm
Close doors

g1 m1 g2
m2a

m2b

Fig. 1. A small example of two stages with associated guard and milestone(s).

This way, we (a) obtain and (b) reason on data about the world state.
4. Evaluate all other request rules on the working memory, i. e. those rules

from which PUT/POST/DELETE requests follow. Make the corresponding
HTTP requests.
This way, we enact changes on the world’s state.

2.3 The Guard-Stage-Milestone Approach

The Guard-Stage-Milestone approach is an artifact-centric workflow meta-model,
presented by Hull et al. in [10]. The key modelling elements for Guard-Stage-
Milestone workflows are the following: The Information model contains all
relevant information for a workflow instance: data attributes maintain informa-
tion about the system controlled by the workflow instance, and status attributes
maintain control information such as how far the execution has already pro-
gressed. Stages contain a task (i. e. the actual activity, an unit of work to be
done by a human or machine) and may be nested. Guards control whether a
stage gets activated, i. e. the activity may execute, and are formulated sentries.
Sentries are expressions in a condition language, e. g. Event-Condition-Action
rules (on <event> if <condition> then <action>). Here, events may be in-
coming from the system, or be changes to status attributes. Milestones are
objectives that can be achieved during execution, and are represented using
boolean values. Milestones have achieving and invalidating sentries associated:
If an achieving sentry is evaluated to true, the milestone is set to achieved. An
invalidating sentry can set a milestone back to unachieved. An example can be
found in Figure 1.

To specify the operational semantics, [10] provides a set of six PAC rules.
PAC rules are a variation of Event-Condition-Action rules and are described
by an prerequisite, antecedent and consequent, respectively. Both prerequisite
and antecedent range over the entire information model, and the consequent
is an update to the status attributes. The rules can be subdivided into two
categories: explicit rules, which accomplish the actual progress in a workflow
instance, and invariant preserving rules, which perform “housekeeping” by,
e. g., deactivating child stages if the parent has been deactivated.

3 Example

Figure 2 shows, using a fire alarm as an example, how a workflow execution
proceeds. Every line represents a step. Line 2: when smoke has been detected,
the start alarm stage is triggered. Line 3: the “close doors”-guard gets activated,

6 Jochum, Nürnberg, Aßfalg, Käfer

Start fire alarm
Close doors

g1 m1 g2
m2a

m2b
g1: Smoke detected
 & Doors open
m1: Alarm is on
!m1: Door status: Closed

g2: Alarm is on (m1)
 & Doors open
m2a: Doors Ould not be closed
m2b: Doors were closed
!m2b: Door status: open

Start fire alarm
Close doors

g1 m1 g2
m2a

m2b

Start fire alarm
Close doors

g1 m1 g2
m2a

m2b

Start fire alarm
Close doors

g1 m1 g2
m2a

m2b

Start fire alarm
Close doors

g1 m1 g2
m2a

m2b

Start fire alarm
Close doors

g1 m1 g2
m2a

m2b

Door status: Open
Smoke : False

Door status: Closed
Smoke : True

Door status: Open
Smoke : True

Door status: Open
Smoke : True

Door status: Closed
Smoke : True

Door status: Open
Smoke : True

: Environment Variables

: Active Stage

: Active Guard

: Active Milestone

: Invalidated Milestone

Fig. 2. Example of a workflow execution. Time progresses from top to bottom.

which triggers the closing of the doors. Line 4: the invalidating sentry of m1
deactivates g2. Line 5: after all doors had been closed, somebody re-opens a
door. This triggers the invalidation of the corresponding milestone m2b (all
doors are closed). As a consequence, the alarm stage is re-triggered.

4 Proposed Approach

Our approach consist in an ontology to model GSM workflows and instances and
operational semantics in rules with ASM4LD semantics, which interpret those
workflows and instances. The rules can be directly deployed on a corresponding
interpreter. We first present the ontology and then the operational semantics.
We use the syntax described in Section 2.

4.1 Ontology for Modelling Entities

We built an ontology10 to describe the core modelling primitives from [10]. We
stay as closely as possible to their definitions and divert only if demanded by
the our environment of Read-Write Linked Data: Tasks are HTTP requests as
atomic activities. Sentries contain a SPARQL ASK query in SPIN notation11.
Correspondingly, we use SPIN’s true boolean SPARQL query result (we cannot
use false, as we excluded negation in the introduction) with sentries and guards.
We introduce the class State of all states to e. g. model three states of a stage:
active, inactive, and done. Stages are set to done after they have been executed
once.

10 http://purl.org/gsm/vocab
11 http://spinrdf.org/

http://purl.org/gsm/vocab
http://spinrdf.org/

Data-Driven Workflows for Agents on Read-Write Linked Data 7

In our approach, the information model is not a database, but instead Read-
Write Linked Data. Hence, we do not maintain the data attributes ourselves: We
do not store about the system we control, but instead, we retrieve the system
state live in RDF over HTTP from the system itself. We maintain the status at-
tributes for uniform access and also describe and retrieve the workflow instance
status in RDF over HTTP. Thus, from now on we call all information regarding
the state of the workflow status information. All information about environmen-
tal conditions in form of external data providers like an external service, we call
environment information.

4.2 Operational Semantics

The following operational semantics are based on the PAC-rule-based semantics
from [4]. We distinguish between setup and flow conserving (FC) rules. We as-
sume all status information in an collection resource at http://ldpc.example/.

Instance Set-up Rules The basic condition for all setup rules is:

CS := :StageInstance(i) ∧ :isInstanceOf (i, s) ∧ :hasState(i, :uninitialized)

Workflow The setup can be requested by publishing an unitialised instance:

CS −→ PUT(i, :SuperStageInstance(i) ∧ · · · ∧ :hasState(i, :active))

Stage Then, resources are created for all the model’s sub-stages, linked to their
counterpart in the model, and with state inactive.

CS ∧ :hasDescendantStage(s, schild)

−→ POST(http://ldpc.example/, :isInstanceOf (new, schild)

∧:inSuperStageInstance(new, i) ∧ :hasState(new, : inactive))

Milestone Also, resources are created for all the model’s milestones, linked to
their counterpart in the model, and with state unachieved.

CS ∧ :hasDescendantStage(s, schild) ∧ :hasMilestoneModel(schild,m)

−→ POST(http://ldpc.example/, :isInstanceOf (new,m)

∧:inSuperStageInstance(new, i) ∧ :hasState(new, :unachieved))

Flow-conserving Rules The following condition has to match in every FCR.

FC := :SuperStageInstance(SI) ∧ :StageModel(sM) ∧ :StageInstance(sI)

∧:isInstanceOf (sI , sM) ∧ :inSuperStageInstance(sI , SI) ∧ :hasState(SI , :active)

http://ldpc.example/

8 Jochum, Nürnberg, Aßfalg, Käfer

FCR-1 For inactive stages, we check the guards. If a guard holds, the state of
the stage is set to active and the task of the stage is executed.

FC ∧ :hasGuard(sM , g) ∧ :hasHttpRequest(sM , req) ∧ :allAncestorsActive(sI , true)

∧:hasState(sI , :inactive) ∧ :hasCondition(g, c) ∧ sparql-results:boolean(c, true)

−→ PUT(sI , . . . :hasState(sI , :active))

−→ req(·, ·)

FCR-2 Set an active stage done and its milestone achieved if the validating
sentry holds.

FC ∧ :hasState(sI , active) ∧ :hasMilestoneModel(sM ,mM)

∧:hasValidatingSentry(mM , ca) ∧ :isInstanceOf (mI ,mM)

∧sparql-results:boolean(ca, true)

−→ PUT(mI , . . . :isAchieved(mI , true))

−→ PUT(sI , . . . :hasState(sI , :done))

FCR-3 When an achieved milestone’s invalidating sentry of a completed stage
becomes true, three things are done by the following rule: (1) The invalidated
milestone is set to unachieved (2) All other milestones of the stage are set to
unachieved (3) The milestone’s stage is set to inactive.

FC ∧ :hasMilestoneModel(sM ,mM) ∧ :isInstanceOf (mI ,mM) ∧ :isAchieved(mI , true)

∧:hasInvalidatingSentry(mM , c) ∧ sparql-results:boolean(c, true)

∧:hasMilestoneModel(sM ,mM
2) ∧ :isInstanceOf (mI

2,m
M
2) ∧ :isAchieved(mI

2, true)

−→ PUT(mI , . . . :isAchieved(mI , false))

−→ PUT(mI
2, . . . :isAchieved(mI

2, false))

−→ PUT(sI , . . . :hasState(sI , :inactive))

FCR-6 The invalidation of an active stage’s milestone sets all descendant stages
to inactive and all of the stage’s and its descendants’ milestones to unachieved.

FC ∧ :hasMilestoneModel(sM ,mM) ∧ :isInstanceOf (mI ,mM) ∧ :isAchieved(mI , true)

∧:hasInvalidatingSentry(mM , c) ∧ sparql-results:boolean(c, true)

∧:hasMilestoneModel(sM ,mM
2) ∧ :isInstanceOf (mI

2,m
M
2)

∧:hasDescendantStage(sM , sMd) ∧ :isInstanceOf (sId, s
M
d)

∧:hasMilestoneModel(sMd ,m
M
d) ∧ :isInstanceOf (mI

d,m
M
d)

−→ PUT(mI
2, . . . :isAchieved(mI

2, false))

−→ PUT(sI2, . . . :hasState(sI2, :inactive))

−→ PUT(mI
d, . . . :isAchieved(mI

3, false))

Data-Driven Workflows for Agents on Read-Write Linked Data 9

5 Evaluation

In this section, we show the correctness of the proposed ruleset. We first show
that the FCR rules cover the functionality of the PAC rules from [4]. Second we
show that our approach does not violate the GSM invariants. This implies the
correctness of the rules.

Discussion of our Rules PAC-1 activates a stage if its parent and one of its
guards are active. FCR-1 does completely match this. PAC-2 sets a milestone
to achieved if a milestone’s achieving sentry changes to true and the stage the
milestone is attached to is active. This also completely matches FCR-2. PAC-
3 invalidates all milestones whose invalidating sentries are true. Again, FCR-3
covers this completely. PAC-4 resets Milestones of a stage, if the stages guards
are triggered. As a result of missing change-events, we omitted this rule. Its
functionality can be achieved by adding the guards’ sentry as invalidating sentry
to all attached milestones. PAC-5 deactivates a stage upon achievement of one
of its milestones. We merged this into FCR-2, as otherwise, they would not
happen in the same step. PAC-6 determines that all stages nested into another
are deactivated, as soon as the latter is deactivated. FCR-6 covers this.

Checking the GSM Invariants Damaggio et al.[4] provide two invariants to
ensure the consistency of their workflow model. To show that our approach does
not violate the invariants, we first define the following:

– S is the set of stages
– G is the set of guards, Gs ⊆ G all guards of a stage s
– M is the set of milestones, Ms ⊆M all milestones of a stage s,
– Φ is the set of Sentries, φ : M → {true, false} represents the result of the

sentry
– d(s) = {sc ∈ S|sc is child-stage of s},
– Σ := {active, inactive, done, achieved, unachieved} is the set of possible

states
– Σ∗ := The set of all possible Snapshots,
– f : Σ∗ → Σ∗ representing the result after application of our ruleset,

For reasons of readability f(σ) with σ ∈ Σ∗ will be abbreviated with σ′.
σ(x) will be an abbreviation for the state of the instance (of a milestone or stage)
x. Note that, as described, there are 3 possible states for stages: active, inactive
and done.

Next, we present the two invariants and give a logical formulation:

GSM-1 “If a stage S owns a milestone m, then it cannot happen that both S is
active and m has status true. In particular, if S becomes active then m must
change status to false, and if m changes status to true then S must become
inactive.” [4]

∀s ∈ S,m ∈Ms : σ(s) = active =⇒ σ(m) 6= achieved

∧σ(m) = achieved =⇒ σ(s) 6= active

10 Jochum, Nürnberg, Aßfalg, Käfer

GSM-2 “If stage S becomes inactive, the executions of all substages of S also
become inactive.” [4]

∀s ∈ S, s′ ∈ d(s) : σ(s) = inactive =⇒ σ(s′) = inactive

We now show that these invariants are not violated throughout the execution
of one of our workflow models. c : Σ∗ → {true, false} determines wheter a state
σ is conform to GSM-1 and 2.

Theorem: GSM-1 and GSM-2 sustain true throughout the workflow execution.

Proof: We apply a set of rules to our distributed information model. We prove
the invariants’ correctness using mathematical induction. One snapshot σ con-
tains all data concerning the workflow’s state, as well as environment values at
the beginning of the loop iteration. σ0 will represent our initial workflow state
after the initialization.

Base case: σ0 : No stage is activated yet =⇒ c(σ) = true. X

Step case: σ → σ′ : In order to get into an inconsistent state one of the invariants
must be violated. We will therefore distinct two cases: a violation of GSM-1 and
a violation of GSM-2:

GSM-1 To investigate the consistency of the following state we will try to show
of the contrary. Assume that there are rules that derive at least one triple
so that c(σ′) = false. To achieve that from a consistent state there must be
a milestone m, and a stage with either (1) or (2) satisfied:

σ(m) = unachieved ∧ σ′(m) = achieved ∧ σ′(s) = active (1)

(σ(s) = done ∨ σ(s) = inactive) ∧ σ′(s) = active ∧ σ′(m) = achieved (2)

Case (1): The only rule that sets a milestone to achieved (true) is FCR-2.
The rule’s condition requires an active stage. If then a corresponding
milestone’s achieving sentry is true, its milestone is set to achieved and
FCR-5 is triggered which sets the stage to done. This leads to:

φaσ(m) = true ∧ σ(s) = active =⇒ σ′(m) = achieved ∧ σ′(s) = done
(3)

which contradicts to (1).
Case (2): Assuming that (2) holds, there must be a rule that sets a stage’s

state to active, while the state of a milestone attached to it remains
achieved. Only FCR-1 is able to change the state of a stage. Its con-
dition requires the state to be inactive prior to being set active. If a
stage’s milestone is achieved it is set to done instead of inactive. There-
fore a stage can not be set to active while its milestone is active. This
contradicts (2).

GSM-2 Similar to GSM-1, we will show the contrary by assuming there are rules
that derive at least one triple in such a way, that c(σ) = false. This requires

∃s ∈ S, schild ∈ d(s) : σ(s) = inactive ∧ σ′(schild) = active (4)

Data-Driven Workflows for Agents on Read-Write Linked Data 11

Due to FCR-1, if a stage has not been activated in the past, its children
can not be active. This combination of states is only possible if a stage
becomes inactive, while its children are still active. FCR-6 determines, that
for all stages with an attached milestones’ invalidating sentry triggered, all
descendant stages are set to inactive. This leads to the following:

σ(s) = inactive =⇒ ∀schild, s ∈ d(s) : σ′(schild) = inactive (5)

Again, we see a clear contradiction to (4). =⇒ Step case X

These contradictions induce that the rules do not imply a transition from a
consistent state σ to an inconsistent state σ′, or f(σ). ut

5.1 Applicability

An implementation of our approach can be found online12. We use LDBBC13 as
Linked Data Platform Container implementation, and Linked Data-Fu14 [17] as
N3 rule interpreter with ASM4LD [11] operational semantics. We successfully
applied the approach in an use-case with Internet of Things devices having Read-
Write Linked Data interfaces.

6 Conclusion

We presented an approach to specify and execute agent specifications in the form
of data-centric workflows in an environment of semantic knowledge representa-
tion and reasoning.

As with all approaches that work on the web architecture, our agent relies
on polling to get informed about the world state instead of the environment
reporting events. Thus, if the polling rate is not high enough, this sampling
approach may miss important system states. For instance, in the case of the
Internet of Things, we may miss short button presses. We showed in [11] that
our interpreter can indeed achieve high update rates in the range of milliseconds.

References

1. Berners-Lee, T: Read-Write Linked Data. Design Issues, (2009). http://www.w3.
org/DesignIssues/ReadWriteLinkedData.html

2. Casati, F, Ceri, S, Pernici, B, and Pozzi, G: Deriving Active Rules for Workflow
Enactment. In: Proc. 7th DEXA (1996)

3. Ciortea, A, Mayer, S, Gandon, F, Boissier, O, Ricci, A, and Zimmermann, A: A
Decade in Hindsight: The Missing Bridge Between Multi-Agent Systems and the
World Wide Web. In: Proc. 18th AAMAS (2019)

12 http://github.com/nico1509/data-driven-workflows
13 http://github.com/kaefer3000/ldbbbc
14 http://linked-data-fu.github.io/

http://www.w3.org/DesignIssues/ReadWriteLinkedData.html
http://www.w3.org/DesignIssues/ReadWriteLinkedData.html
http://github.com/nico1509/data-driven-workflows
http://github.com/kaefer3000/ldbbbc
http://linked-data-fu.github.io/

12 Jochum, Nürnberg, Aßfalg, Käfer

4. Damaggio, E, Hull, R, and Vacuĺın, R: On the equivalence of incremental and
fixpoint semantics for business artifacts with Guard–Stage–Milestone lifecycles.
Information Systems 38(4) (2013)

5. Elmroth, E, Hernández-Rodriguez, F, and Tordsson, J: Three fundamental dimen-
sions of scientific workflow interoperability: Model of computation, language, and
execution environment. Future Generation Computer Systems 26(2) (2010)

6. Fielding, R: Architectural Styles and the Design of Network-based Software Archi-
tectures. PhD thesis, University of California, Irvine, USA (2000)

7. Gil, Y, Ratnakar, V, Deelman, E, Mehta, G, and Kim, J: Wings for pegasus:
Creating large-scale scientific applications using semantic representations of com-
putational workflows. In: Proc. 19th IAAI / 22th AAAI (2007)

8. Haller, A, Cimpian, E, Mocan, A, Oren, E, and Bussler, C: WSMX – a semantic
SOA. In: Proc. ICWS (2005)

9. Harth, A and Speiser, S: On Completeness Classes for Query Evaluation on Linked
Data. In: Proc. 26th AAAI (2012)

10. Hull, R, Damaggio, E, De Masellis, R, Fournier, F, Gupta, M, Heath, FFTI, Hob-
son, S, Linehan, MH, Maradugu, S, Nigam, A, Sukaviriya, PN, and Vacuĺın, R:
Business artifacts with guard-stage-milestone lifecycles. In: Proc. 5th DEBS (2011)

11. Käfer, T and Harth, A: Rule-based Programming of User Agents for Linked Data.
In: Proc. 11th LDOW (2018)

12. Käfer, T and Harth, A: Specifying, Monitoring, and Executing Workflows in Linked
Data Environments. In: Proc. 17th ISWC (2018)

13. Newman, S: Building Microservices-Designing Fine-grained Systems. O’Reilly (2015)
14. Pautasso, C: RESTful Web Service Composition with BPEL for REST. Data and

Knowledge Engineering 68(9) (2009)
15. Pautasso, C and Wilde, E: Push-Enabling RESTful Business Processes. In: Proc.

9th ICSOC (2011)
16. Pautasso, C, Zimmermann, O, and Leymann, F: Restful Web Services vs “Big” Web

Services: Making the right architectural decision. In: Proc. 17th WWW (2008)
17. Stadtmüller, S, Speiser, S, Harth, A, and Studer, R: Data-Fu: A language and an

interpreter for interaction with R/W Linked Data. In: Proc. 22nd WWW (2013)
18. Turi, D, Missier, P, Goble, C, Roure, DD, and Oinn, T: Taverna Workflows: Syntax

and Semantics. In: Proc. 3rd e-Science (2007)
19. Zur Muehlen, M, Nickerson, JV, and Swenson, KD: Developing web services chore-

ography standards—the case of REST vs. SOAP. Decision Support Systems 40(1)
(2005)

	Data-Driven Workflows for Specifying and Executing Agents in an Environment of Reasoning and RESTful Systems

