
Controlling Internet of Things devices with
Read-Write Linked Data Interfaces using

Data-Driven Workflows

Benjamin Jochum, Leonard Nürnberg, Nico Aßfalg, and Tobias Käfer
uzebb@student.kit.edu, ujeng@student.kit.edu, uberq@student.kit.edu,

tobias.kaefer@kit.edu

Institute AIFB, Karlsruhe Institute of Technology (KIT), Germany

Abstract. We present a first rough prototype for our approach to spec-
ify and execute agents on Read-Write Linked Data that are given as data-
driven workflows, specifically the we build on Guard-Stage-Milestone
workflows. We showcase our approach in a setting from the Internet
of Things, specifically building automation.

1 Introduction

The web can be argued to be at a stage where hypermedia agents could be
applied [2], as its foundational technologies also for write access find widespread
use, for instance:

– Microservices [9] give access to business functions
– Internet of Things devices with web interfaces (see e. g. the W3Cs Web of

Things effort1) allow for enacting change using actuators
– Decentralised social networks such as SoLiD2 allow for standards-based digi-

tised social interaction

Overall, we see that besides the uniform interaction model of REST [4], or
HTTP3, also semantic descriptions using the uniform data model of RDF4 find
considerable uptake. For this data-driven environment called Read-Write Linked
Data [1], we want to specify and execute behaviour. Hence, we are currently in-
vestigating data-driven approaches such as Guard-Stage-Milestone [5] to work-
flow modelling for their application as agent specifications for Read-Write Linked
Data. Data-driven approaches define the course of action data-driven, i. e. based
on system state, whereas traditional flow-based approaches use the finishing of
activities to define the course of action. Workflows in data-driven approaches
are considered more flexible than flow-driven approaches, e. g. it is easier in a
data-driven approach to cover all exceptions and corner cases. We think that the

1 https://www.w3.org/2016/07/wot-ig-charter.html
2 https://solid.mit.edu/
3 https://tools.ietf.org/rfc/rfc7230.txt
4 https://www.w3.org/TR/rdf11-concepts/

https://www.w3.org/2016/07/wot-ig-charter.html
https://solid.mit.edu/
https://tools.ietf.org/rfc/rfc7230.txt
https://www.w3.org/TR/rdf11-concepts/


2 Jochum, Nürnberg, Aßfalg, Käfer

data-driven approach provides a much better fit to the web architecture than the
flow-driven approach for two reasons: (1) in both, data-driven workflows and on
the web, system state is the first-class citizen (cf. REST – Representational State
Transfer). (2) compared to traditional environments for workflow management,
systems are typically more open and less under central control on the web. Thus,
flexibility, ie. the ability to cope with unforseen but possible execution paths in
a workflow, is a desired property in a workflow approach for the web. For an
example of data-drivenness and flexibility, see our walk-through in Section 3.

The challenge is that properties of the environment play a major role in
which workflow approaches are applied in what settings [3]. Therefore, we need
to look at the assumptions of our environment Read-Write Linked Data when
applying workflow technologies. Specifically, we found that Read-Write Linked
Data is fundamentally different from traditional environments where workflow
technologies are applied, e. g. databases, in the following regards:

The absence of events in HTTP In HTTP, there is no way for subscribing
to events, using which a controller could track changes in the environment.

Reasoning and querying under the Open-World Assumption Under the
open-world assumption, we cannot consider information we cannot derive as
false, i. e. we cannot rely on negation when specifying the controller.

In previous works, we have been working towards this challenge: As a basis for
applying workflow approaches for specifying behaviour, we defined ASM4LD, a
model of computation for the environment of Read-Write Linked Data [6]. Thus,
we can specify agent behaviour using rules. Based on this model of computation,
we provided an approach to specify flow-driven workflows [7] and presented a
corresponding demo [8]. In this demo, we present a data-driven approach instead.

Also, there is previous work in workflow management. Hull et al. developed
the Guard-Stage-Milestone approach [5] for central data bases instead of the
web architecture. Pautasso investigated how to retrofit REST into flow-based
workflows [10], whereas we fit an approach for data-driven workflows into REST.

The demo shows preliminary work of two main parts, a workflow ontology
and operational semantics for the Guard-Stage-Milestone workflow language in
the ASM4LD model of computation [6]. The contribution of the demo is a first
rough implementation for a simple use-case from the Internet of Things. This
submission is accompanied by a web page5. A paper on the formal properties of
our approach is in preparation.

The paper is structured as follows: In Section 2, we present the architecture
of our demo and the set-up. Next, in Section 3, we describe how a visitor to our
demo booth can interact with our demo. Last, in Section 4, we conclude.

2 Architecture and Set-Up

Figure 1 shows the components of our implementation for storing and executing
data-driven workflows to control IoT devices. Hence, we have four components or

5 http://people.aifb.kit.edu/co1683/2019/gsm/semantics-demo/

http://people.aifb.kit.edu/co1683/2019/gsm/semantics-demo/


Controlling RWLD-enabled IoT Devices using Data-Driven Workflows 3

Mock/Visualization Server
http://mock-server.lan:3000

/ → main page with info & links

LDBBC
http://tok450s.lan:8080/ldbbc

Get Workflow Instances
/ldbbc/[n]

Linked Data-Fu
When all servers run: 

start with
$ draft/run-curl.sh

$ draft/run.sh

Get mock state
(/mock) Get/Put Workflow Instances

/ldbbc/[n]

IoT
http://t2-rest- … .lan

Get sensor data
Post speaker text

Submit LDBBC’s IP
/iphs

Fig. 1. The Demo System’s Architecture

component families: (1) A Linked Data Platform container to maintain workflow
models and instances, (2) an execution engine for the workflows, (3) a grapical
user interface (4) the actual devices to control. All components are connected
via a network switch that can be coupled with a notebook or a wifi router. We
will now in turn provide more detail on the components:

Linked Data Basic Basic Container (LDBBC) The LDBBC is an imple-
mentation6 of a Linked Data Platform Container[11]. We use LDBBC to
maintain data about workflow models and instances as Linked Data. LDBBC
is written in Java and we deploy it on Eclipse Jetty, a Servlet Container.

Linked Data-Fu Linked Data-Fu7 is a Linked Data processing engine written
in Java [12]. Linked Data-Fu can be programmed in a subset of the Notation3
language’s syntactical features to interact with and reason over Linked Data.
Specifically, we deploy rules for our prototypical operational semantics of a
workflow language on Linked Data-Fu.

Visualization We wrote a component in Node.js and Express that allows to
visualize the workflow’s state stored on the LDBBC. This visualisation reads
the Linked Data about the workflow instance state and shows it as a simpli-
fied GSM workflow model with small annotations. The left part of Figure 2
shows a screenshot of this UI.

IoT Devices We have a number of physical and virtual IoT devices in our
demo. For the physical devices, we use a set of Tessel 28 IoT boards with
modules for RFID sensors, light sensors, and loudspeakers. Each board runs a
Node.js/Express server providing a REST API to get state information with
measurements as Linked Data, or to receive messages to be read out using
the speaker. For the virtual devices, we rely on a similar implementation as

6 https://github.com/kaefer3000/ldbbc
7 https://linked-data-fu.github.io/
8 https://tessel.io/

https://github.com/kaefer3000/ldbbc
https://linked-data-fu.github.io/
https://tessel.io/


4 Jochum, Nürnberg, Aßfalg, Käfer

the visualisation UI (see the right part of Figure 2). Running out of boards,
we implemented a counter using this UI.

3 Walkthrough

The scenario of our demo we be an evacuation workflow. The workflow represents
the programming of an automatic evacuation control system. When approaching
our stand, the visitor will see: a set of IoT devices with RFID sensors attached to
interact with the workflow (used for representing alarm buttons and doors that
have to be closed), speakers for notifications by the workflow (used for giving
evacuation instructions), and a screen showing status information about work-
flow instances (used for visualising the evacuation progress and for explanations
on the overall system).

We show the workflow on the left side of Figure 2. Each activity, called stage
in Guard-Stage-Milestone consists in an action, ie. here: an HTTP request that
changes something, a guard, ie. a condition on the system state that must hold
before the action is executed, and a milestone, ie. a flag that is set after the
action finished. The guards and the milestones reflect the data-drivenness of
this workflow approach: They determine the course of action based on system
state, in contrast to flow-driven approaches such as BPMN, which only take the
finishing of other activities in the arrows into account. As guards and milestones
can get invalidated, deviations in the course of action, which call for flexibility
in the models, can easier be covered in a data-driven approach:

The control system then works as follows. The visitor initiates the evacua-
tion workflow by placing an RFID card on the reader that represents a fire alarm
button. On the speaker, the workflow then announces a fire alarm, and that (1)
emergency will arrive, people have to be (2) evacuated and (3) counted. The
visitor then can fulfil stages by placing and releasing RFID cards on correspond-
ing readers. The operational semantics poll the system state including whether
cards are on the RFID readers. The presence of cards on readers is then part of
our conditions. One of the features of the data-driven approach is that stages
can be invalidated, and thus need to be re-executed or are halted. For instance,
if the initially placed alarm card is removed, the whole emergency procedure is
stopped.

4 Conclusion

Using this demo, we want to show our work-in-progress in applying data-driven
workflows for controlling Read-Write Linked Data resources to the Semantic
Web community. We present a first rough implementation of our approach that
ports the Guard-Stage-Milestone approach to the web architecture. We base
our demo in the setting of Internet of Things, specifically building automation,
where currently a W3C community group is investigating web technologies for
application9.

9 https://w3c-lbd-cg.github.io/bot/

https://w3c-lbd-cg.github.io/bot/


Controlling RWLD-enabled IoT Devices using Data-Driven Workflows 5

Fig. 2. Our UI to show the workflow progress and the virtual IoT devices.

References

1. Berners-Lee, T: Read-Write Linked Data. Design Issues, (2009). http://www.w3.
org/DesignIssues/ReadWriteLinkedData.html

2. Ciortea, A, Mayer, S, Gandon, F, Boissier, O, Ricci, A, and Zimmermann, A: A
Decade in Hindsight: The Missing Bridge Between Multi-Agent Systems and the
World Wide Web. In: Proc. 18th AAMAS (2019)

3. Elmroth, E, Hernández-Rodriguez, F, and Tordsson, J: Three fundamental dimen-
sions of scientific workflow interoperability: Model of computation, language, and
execution environment. Future Generation Computer Systems 26(2) (2010)

4. Fielding, R: Architectural Styles and the Design of Network-based Software Archi-
tectures. PhD thesis, University of California, Irvine, USA (2000)

5. Hull, R, Damaggio, E, Fournier, F, Gupta, M, Heath III, FFT, Hobson, S, Line-
han, MH, Maradugu, S, Nigam, A, Sukaviriya, P, and Vacuĺın, R: Introducing
the Guard-Stage-Milestone Approach for Specifying Business Entity Lifecycles. In:
Proceedings of the 7th International Workshop on Web Services and Formal Meth-
ods (WS-FM) (2011)

6. Käfer, T and Harth, A: Rule-based Programming of User Agents for Linked Data.
In: Proc. 11th LDOW (2018)

7. Käfer, T and Harth, A: Specifying, Monitoring, and Executing Workflows in Linked
Data Environments. In: Proc. 17th ISWC (2018)

8. Käfer, T, Lauber, S, and Harth, A: Using Workflows to Build Compositions of
Read-Write Linked Data APIs on the Web of Things. In: Proc. Posters & Demon-
strations at the 17th ISWC (2018)

9. Newman, S: Building Microservices – Designing Fine-grained Systems. O’Reilly
(2015)

10. Pautasso, C: RESTful Web Service Composition with BPEL for REST. Data and
Knowledge Engineering 68(9) (2009)

11. Speicher, S, Arwe, J, and Malhotra, A, eds.: Linked Data Platform 1.0. Recom-
mendation, W3C. (2015). http://www.w3.org/TR/ldp/

12. Stadtmüller, S, Speiser, S, Harth, A, and Studer, R: Data-Fu: A language and an
interpreter for interaction with R/W Linked Data. In: Proc. 22nd WWW (2013)

http://www.w3.org/DesignIssues/ReadWriteLinkedData.html
http://www.w3.org/DesignIssues/ReadWriteLinkedData.html
http://www.w3.org/TR/ldp/

	Controlling Internet of Things devices with Read-Write Linked Data Interfaces using Data-Driven Workflows

