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Abstract. We present an approach to verify off-chained information
using Linked Data, Smart Contracts, and RDF graph hashes stored on
a Distributed Ledger. We use the notion of a Linked Pedigree, i. e. a
decentralised dataset for storing hyperlinked information, as modelling
foundation. We evaluate our approach by comparing different ways to
build the Smart Contract. We develop a cost model and show, based
on our implementation, that for managing multiple Linked Pedigree in-
stances, a single larger Smart Contract is superior to multiple smaller
Smart Contracts for supply chains shorter than 50 participants.

1 Introduction

Chained value-creation networks are commonplace in many industries. Consider
e. g. supply chain networks in logistics or production systems, where goods and
services are handed over decentrally between different independent parties to
deliver goods and services to the customer. In such networks, transparency is
gaining importance. Customers demand verifiable1 information on where their
food comes from (track & trace), or recall campaigns need to be organised fast
and specifically. Recently, distributed ledger-based solutions have gained atten-
tion, e. g. TradeLens by IBM and Maersk for global trade networks2. But shar-
ing information on a distributed ledger may not always be desirable: As in a
distributed ledger, every participant stores a copy of the whole ledger, data
sovereignty and privacy become an issue. Moreover, storing data on the dis-
tributed ledger is expensive, which calls for so-called “off-chaining” of data [3],
i. e. storing data outside of the distributed ledger while keeping the distributed
ledger in the loop by storing hashes on the ledger. For off-chaining, to not com-
plicate matters, a uniform access mechanism would be desired. Linked Data is a
light-weight standard-based way to publish data in a decentralised fashion, where
1 To verify: “Make sure or demonstrate that (something) is true, accurate, or justified.”
(Oxford Living Dictionary) We assume truth of the information on the distributed
ledger to be established. Then, we allow for verification that the information has not
been changed.

2 “IBM teams with Maersk on new blockchain shipping solution”, https://tcrn.ch/
2vRLFLT

https://tcrn.ch/2vRLFLT
https://tcrn.ch/2vRLFLT
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access control can be easily implemented. Hence, we ask: Can we combine the
verification capabilities of the distributed ledger with Linked Data management?

Transparently provided information is important, e. g. in the food sector,
where society demands more transparency regarding details on products and
their transportation [1]. More general, in retail, the transparency in production
and transport of consumer goods and retail products is a important factor of
customer decisions [10, 14]. Regulation authorities discuss such product trans-
parency and documentation to be required in the future [4]. But that information
needs not just to be public. Customer trust needs to be ensured, where struc-
tural assurances [5] such as the mathematical foundations of distributed ledgers
can serve as basis. Publicly shared information has high economic potential in
the logistics domain, e. g. by addressing the bullwhip effect, but is hindered by
the need for privacy of businesses [8, 11]. Hence, a more cautious approach to
share data, like disclosing data only to a selected number of persons, may unlock
some of the benefits. But even if organisations are willing to share information,
interoperability of the information systems is an issue [8, 11, 17]. Hence, the flex-
ible data model of RDF and the standardised light-weight protocol HTTP can
reduce friction. If RDF is not available yet in an organisation, lifting of existing
data to semantic models has already been proposed in [7].

Previous works in the intersection of Semantic Web and Distributed Ledger,
e. g. at the Linked Data and Distributed Ledgers workshop series (LD-DL)3

have not considered off-chaining of data. Previous works in off-chaining of data
are often built using distributed hash tables [3], where the problem of data
sovereignty arises just like with storing data on the chain.

Our approach consists in the following parts (this unique combination and
2, 4, 5, and 6 are the contributions of this paper):

1. We use Linked Data, i. e. RDF accessible using HTTP to store data off-chain
in a decentralised fashion. Access control for data privacy can be layered on
top, e. g. using HTTP authentication, or more recent approaches such as
Web Access Control4 or WebID+TLS5.

2. We present a vocabulary that extends the Linked Pedigree ontology [15]
to describe a product’s handover history and the Ethereum Ontology6 to
describe an Ethereum distributed ledger.

3. We use the RDF graph hashing approach of [6] to connect the off-chained
data with the distributed ledger.

4. We present a link-traversal based querying approach for verifying data on a
Linked Pedigree off-chain.

5. We present a Smart Contract, i. e. code that can be executed on the Dis-
tributed Ledger, for verifying data using the Distributed Ledger.

6. We present a protocol to apply all of the above.

3 Browse with http://events.linkeddata.org/ldow-lddl/ as entry point.
4 https://www.w3.org/wiki/WebAccessControl
5 https://www.w3.org/2005/Incubator/webid/spec/tls/
6 http://ethon.consensys.net/

http://events.linkeddata.org/ldow-lddl/
https://www.w3.org/wiki/WebAccessControl
https://www.w3.org/2005/Incubator/webid/spec/tls/
http://ethon.consensys.net/
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The paper is structured as follows: First, we survey related work (Section 2).
Next, we present an example (Section 3), which also introduces the protocol.
Subsequently, we present the foundational definitions, on which we base our
approach (Section 4). Then, we describe the components of our approach (Sec-
tion 5), that is the vocabulary, the smart contract, and the graph traversal. We
next evaluate our approach (Section 6) by developing a cost model, which we
instantiate using an implementation. We then discuss our findings (Section 7).
Last, we conclude (Section 8).

2 Related Work

In the intersection of supply chain and distributed ledger, there are two ma-
jor initiatives started in collaboration with IBM. Both initiatives are based on
the distributed ledger Hyperledger: TradeLens for global freight companies, and
FoodTrust for agricultural goods. Both approaches have similar characteristics:
All information (e. g. document filings, supply chain events, authority approval
status, . . . ) is stored on the distributed ledger. As all nodes that are part of
the distributed ledger have a full copy of the ledger, this hints at scalability
issues. Both solutions support access rights to this data on the ledger. Trade-
Lens is citing data interoperability as a challenge. While they incrementally
move to UN’s CEFACT vocabulary7, our approach allows for using semantic
technologies to achieve data interoperability using mappings between schemas.
Similarly, provenance.org, an online service for track and trace of goods using
a distributed ledger, stores all data on the ledger.

In the intersection of semantic technologies and distributed ledgers, different
ontologies have been proposed to describe a distributed ledger: There is, e. g.
GraphChain [16], BLONDiE8, and EthOn9. Our approach uses parts of EthOn.
Besides defining an ontology, the GraphChain [16] approach also allows to dis-
tribute RDF data onto a distributed ledger. Our approach however requires data
to be provided as Linked Data, irrespective of the back-end.

In the intersection of semantic technologies and supply chain, the Linked
Pedigree approach has been developed [15]. Linked Pedigrees are RDF graphs to
describe trails of ownership of goods provided via HTTP. Moreover, the paper
contains a protocol for using the thus described data in a supply chain. Our
approach adds verification using distributed ledger technologies and hashing to
Linked Pedigrees.

3 Example

We next describe an example to illustrate our approach. Imagine the following
three steps in a simple supply chain:
7 https://blog.tradelens.comascomm/news/why-interoperability-matters/
8 https://github.com/hedugaro/Blondie
9 http://ethon.consensys.net/

http://provenance.org
https://blog.tradelens.com as comm/news/why-interoperability-matters/
https://github.com/hedugaro/Blondie
http://ethon.consensys.net/
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Item Creation: A fisherman creates an item, i. e. some fish.
Item Handover: The fish is handed over between supply chain partners, e. g.

from the fisherman to a trucker to a local supermarket to the consumer.
Item Verification: At the store, the consumer verifies information about the

fish as a decision-making support for the purchase. Verification could also
be performed during each handover.

For the illustration, we look at the information transferred during these three
steps: Within the first two steps, i. e. item creation and item handover, the
item’s physical history is described and published as Linked Data. The third
step of item verification solely corresponds to the verification of that published
information, and does not involve checking on the physical item itself. For brevity
of the example, we leave out verification during the handover steps. The overall
protocol is depicted in Figure 1. The top left group starting with “create item”
in bold relates to the item creation. The next group starting with “transport
item” relates to the handover. With “store item”, the step for verifying the data
starts, ending in the actual purchase.

3.1 Item Creation

The fisherman creates an supply chain item by catching the fish. They record
information on the item and the catching process, e. g. fishing ground and time,
builds an RDF graph from the information, and publishes the graph via HTTP.
Thus, the initial part of the Linked Pedigree on the fish is formed. From this
point, the creation procedure is the same as for any item handover in the supply
chain.

3.2 Item Handover

When the fish is handed over, e. g. from the fisherman to the trucker that carries
the fish to the market, an RDF graph with information on the hand-over is
created and stored in the Linked Data store of choice of the party that owns the
fish before the hand-over. The information is linked to the RDF graph describing
the previous Linked Pedigree part, which contains an event that concerns this
fish. Thus, we form a hyperlinked graph of the fish’s product trail. Additional
information may be included ad libitum in each step, e. g. information on the
item’s creation. For later verification purposes, a hash of the information is put
into the Distributed Ledger using a Smart Contract.

3.3 Item Verification

Before actually buying the fish, the consumer may want to ascertain if the fish’s
information has not (maliciously) been tampered with, e. g. a retrospective ad-
justment to the cooling information was made. To this end, the consumer looks
up the fish’s information, which the supermarket provides in the form of a URI
of a Linked Pedigree part. This Linked Pedigree part contains a reference to the
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previous part, which the end-consumer now dereferences. Consulting a Smart
Contract, the customer can determine whether the retrieved information has
not been changed since it was first published. By following the links in a Linked
Pedigree to the respective previous Linked Pedigree and by dereferencing the
corresponding identifiers, the customer can go back in the information trail on
the fish right until the very beginning, i. e. the catchment. In each step, the cus-
tomer can consult the Smart Contract to verify the integrity of the information
provided.

This verification can be performed analogously at any point in the supply
chain by any participant, starting at different points in the traversal.

4 Preliminaries

We base our approach on Linked Data, i. e. we make use of URIs, and provide
hyperlinked RDF graph via HTTP. We build Linked Pedigrees in the form of
RDF graphs. We store RDF graph hashes in a Distributed Ledger based on
Ethereum using a Smart Contract.

4.1 Linked Data, URIs, RDF, and HTTP

We following the Linked Data principles10: We use Uniform Resource Identi-
fiers11 (URIs) as names for things. We use graphs expressed according to the
Resource Description Framework12 (RDF) to describe things. An RDF graph
is defined as a set of triples. With U as the set of all URIs, B as the set of
all blank nodes, and L as the set of all literals, a triple t can be defined as
t ∈ (U ∪ B) × U × (U ∪ B ∪ L). In our examples, we use CURIEs13 that allow
to abbreviate URIs using prefixes14 . We use the Hypertext Transfer Protocol15

(HTTP) to dereference URIs and assume dereferencable URIs.

4.2 Linked Pedigree

A Linked Pedigree [15] is a trail of ownership of a product published as Linked
Data described using terms from the OntoPedigree ontology. Each Linked Pedi-
gree consists of different parts, i. e. instances of the class p:Pedigree, which
reflect the different owners. The parts are assumed to be linked using the p:

10 https://www.w3.org/DesignIssues/LinkedData
11 https://www.ietf.org/rfc/rfc3986.txt
12 https://www.w3.org/TR/rdf11-concepts/
13 https://www.w3.org/TR/curie/
14 We point to prefix.cc for resolving the prefixes. Moreover, we use p: as short for

http://purl.org/pedigree#, e: as short for http://ethon.consensys.net/, and
x:, as short for http://people.aifb.kit.edu/co1683/2019/ld-chain/vocab# for
our extensions.

15 https://www.ietf.org/rfc/rfc7230.txt

https://www.w3.org/DesignIssues/LinkedData
https://www.ietf.org/rfc/rfc3986.txt
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/curie/
http://prefix.cc/
http://purl.org/pedigree##
http://ethon.consensys.net/
http://people.aifb.kit.edu/co1683/2019/ld-chain/vocab##
https://www.ietf.org/rfc/rfc7230.txt
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hasReceivedPedigree property. As each owner of a product may choose a stor-
age provider of their liking, the Linked Pedigree can be regarded as a decen-
tralised dataset. Each part of a Linked Pedigree bears a status, p:Initial,
p:Intermediate, or p:Final. We show the terms of the OntoPedigree ontology
that we use in this paper as part of Figure 2.

4.3 Hashing RDF graphs

To hash RDF graphs, we apply the approach of Hogan [6]. The approach allows
for determining stable hashes of RDF graphs in the presence of isomorphism-
preserving transformations of the graph, i. e. triple re-ordering and blank node
renaming.

4.4 Distributed Ledger Technologies

Distributed Ledger Technologies is the umbrella term for distributed ledger con-
cepts like blockchain or transaction-based directed acyclic graphs [9]. A dis-
tributed ledger is a distributed database in a decentralised network, where changes
to the database, i. e. transactions, have to be approved by network nodes via a
consensus algorithm [12]. This allows for secure processing of transactions be-
tween parties that do not trust each other. Furthermore, when new data is
appended to the distributed ledger, timestamps and hash-based references to
previous data are included. This meta data leads to a high degree of data in-
tegrity and imposes a high effort on retrospective modification of data [12]. In
addition, as the database is replicated in full, every network participant can
query their instance of the distributed ledger. Hence, all data and all associated
changes are transparent to the entire network.

Ethereum Blockchain For our work, we choose Ethereum, a well-established
blockchain implementation, that allows for the deployment of decentralised ap-
plications via Smart Contracts [2]. Ethereum allows for building private proof-
of-work blockchains. Proof-of-work is a consensus algorithm based on expensive
compute operations, which need to be executed for the approval of blocks of
transactions. Participating in the consensus creation, i. e. approving blocks of
transactions following a specified algorithm, here proof-of-work, is also referred
to as “mining”.

Closely connected to the mining process in an Ethereum network is Ethereum’s
internal cryptocurrency called “Ether”. Ether is used to pay transaction fees.
Whenever a transaction is issued, the miner who approves the transaction is
to be compensated for lending his computing power to the network. This net-
work utilisation is measured in “gas”, ether’s internal utility value. Therefore,
costs are typically given in gas. However, in private blockchain networks the
amount of computing power necessary for proof-of-work based consensus can be
set to a reasonably low level, such that transaction fees as well as energy cost
for computation of the proof-of-work algorithm are kept within limit.
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Ethereum Smart Contracts Ethereum also allows for the deployment of
Smart Contracts. Smart Contracts allow for defining application logic that can
be executed directly on the distributed ledger. Applications built as Smart Con-
tracts are thus sometimes called “decentralised applications”. A Smart Contract
can be regarded as application logic that executes automatically during mining
when the conditions of the contract are met [18]. From a programming perspec-
tive, a Smart Contract is a piece of code that is stored on a distributed ledger
and executed in a decentralised manner, i. e. local execution, then synchronis-
ing and consenting on the resulting database change, if any, with the network.
Ethereum’s Smart Contracts are typically written in Solidity, a Turing-complete
object-oriented high level programming language [2] with a syntax similar to
JavaScript.

A notable feature of Solidity are function modifiers16. Prior to the execution
of the actual function, function modifiers check if specified conditions are satis-
fied, e. g. if the party who calls the function call is really allowed to execute the
contract’s function. This way, function modifiers can act as a safety feature, e. g.
for limiting access rights on specific functionality to a specified set of accounts,
i. e. agents.

5 Technical View on Key Components

In the following, we will present our approach from a technical perspective.
We first elaborate the model of a Linked Pedigree and its Ontology to model an
item’s creation and handovers among supply chain partners. Then, we outline the
implemented Smart Contract’s functionality that enables for the item verifica-
tion process. Finally, we present our Linked Graph Traversal algorithm, thereby
explaining the procedure of item verification and Linked Pedigree retrieval in
detail.

5.1 Vocabulary

In each Linked Pedigree part that is not an initial Linked Pedigree part, the prop-
erty p:hasReceivedPedigree specifies the respective previous Linked Pedigree
part by its URI. When additional information is desired to be verifiable as well,
additional triples can be added ad libitum. For verifying the information on the
Linked Pedigree using the Distributed Ledger, we have to add information on
where to verify the information. To this end, we built an ontology by taking
selected parts from the OntoPedigree ontology, added terms from the EthOn
ontology, and invented new terms. A depiction of our overall data modelling can
be found in Figure 2.

16 https://solidity.readthedocs.io/en/v0.5.8/contracts.html#
function-modifiers

https://solidity.readthedocs.io/en/v0.5.8/contracts.html##function-modifiers
https://solidity.readthedocs.io/en/v0.5.8/contracts.html##function-modifiers
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p:Pedigree

 
p:hasReceivedPedigree

rdfs:Resource

 

p:hasProductInfo

<<enumeration>>
p:PedigreeStatus

p:Initial
p:Intermediate

p:Final

p:hasPedigreeStatus

dc:Agent

 

dc:publisher

xsd:dateTime

p:pedigreeCreationTime

x:ChainInfo

 

x:hasValidationInfo

e:ContractAccount

 

x:hasContractAccount

x:BootNode

 

x:hasBootNode

xsd:hexBinary

e:address

e:Network

 

e:partOf

e:Blockchain

 

e:minesFor

xsd:anyURI

x:hasEnodeURI

e:FullNode

 

xsd:integer

x:hasNetworkId

e:GenesisBlock

 

e:containsBlock

Fig. 2. The vocabulary we use for our approach. We use an UML class diagram to illus-
trate modelling in RDFS using the following correspondence: UML’s class, association,
and inheritance map to rdfs:Class, rdfs:domain and rdfs:range of an rdf:Property,
and rdfs:subClassOf relationships respectively.

5.2 Smart Contract

Our Smart Contract offers three functions: First, RDF graph hashes of Linked
Pedigree parts can be stored together with their URI on the distributed ledger.
Further, these hashes can be looked up from the distributed ledger using their
associated URI. Finally, the URI of a single Linked Pedigree part can be looked
up using its direct successors’ URI.

Storing hashes An agent, requesting the Smart Contract to store a hash of a
Linked Pedigree part, must provide the following arguments:

– The hash itself
– The URI of the Linked Pedigree part (required to enable for look ups of the

hash by its Linked Pedigree part URI).
– The URI of the previous Linked Pedigree part (needed in order to append

the current part’s URI to the correct Linked Pedigree)
– The wallet of the next owner (required for rights management, specifically

we thus can restrict writing information on this Linked Pedigree to the next
owner)

In Figure 1, the calls that “issue [a] transaction” are storing hashes. Once stored,
the Smart Contract does not allow for hashes being altered or removed.

A request for storage of a hash results in a transaction on the distributed
ledger issued by the Smart Contract. Therefore, the requesting agent has to pay
a transaction fee in order to compensate for the required network utilisation.
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Retrieving hashes To enable for a verification process by hash comparison, a
hash can be retrieved for the RDF graph of a Linked Pedigree part by calling
the Smart Contract using the part’s URI. Such look-ups are characterised using
“read call” in Figure 1. Since this look up can be carried out without a transaction
to the network, no transaction fee applies here.

Retrieving URIs An agent may not be able or authorised to dereference the
URI of a Linked Pedigree part. The Smart Contract offers a fall-back function
for looking up the corresponding previous part’s URI. This way, unavailable
Linked Pedigree parts can be skipped, thereby keeping the traversable chain of
URI references intact. Again, since any agent ought to be able to look up URIs,
retrieval of URIs via the Smart Contract is unrestricted. We omitted such calls to
the Smart Contract from Figure 1. As for retrieving a hash, the Smart Contract
for URI retrieval does not need to invoke transaction, again, no transaction fee
applies.

5.3 Link Traversal and Data Verification

To retrieve and verify a specific Linked Pedigree, an agent starts with the URI
from the Linked Pedigree they know to be the last in the chain. They can then
obtain the RDF graph that describes this Linked Pedigree part using an HTTP
GET request. From this RDF graph, the agent calculates a hash value using the
blabel approach from [6]. We use the implementation available online17. At the
same time, the agent retrieves the stored hash for this URI from the Distributed
Ledger using the Smart Contract. The agent can then verify the information by
comparing the hash they generate to the hash retrieved from the Smart Contract.

To go further in the history of the item, the agent performs Link Traversal-
based querying intertwined with verifying as just described: For a part p, the
agent queries the RDF graph about the p for triples with p as subject and
p:hasReceivedPedigree as predicate. Then, the agent finds the URI of the
previous Linked Pedigree part in object position. With this URI, the agent per-
forms dereferencing, verifying, and querying as described, until the initial Linked
Pedigree part, i. e. the part with p:Initial status, is reached.

The traversal algorithm may terminate exceptionally, e. g. when Linked Pedi-
gree parts are unavailable due to outages, or insufficient rights for the agent.
However, for each Linked Pedigree part URI the previous Linked Pedigree part’s
URI can be looked up using the Smart Contract. This allows for skipping of
unavailable parts.

By traversing backwards on this chain of URIs, the item’s whole Linked
Pedigree is retrieved, see the HTTP-GET requests from the End Consumer to
Trucker and Fisher in Figure 1. If all hash pairs match, the whole Linked Pedigree
can be regarded as verified. Additionally provided links can be looked up for
more information, e. g. on the item itself, its production or its transportation, if
corresponding access rights are granted.
17 https://blabel.github.io/

https://blabel.github.io/
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6 Evaluation

To evaluate our approach, we contrast two ways of achieving the presented func-
tionality using Smart Contracts: Looking at our supply chain example, we ask
if the deployment of a Smart Contract for the whole supply chain network, or
a more fine-grained approach of multiple Smart Contracts is more beneficial.
For clarity of the presentation, we name the approach with a Smart Contract
that manages hashes and URIs for multiple items in the network, a “Multi-Item-
Contract” (MIC). The alternative, a “Single-Item-Contract” (SIC), is a Smart
Contract that is used for validating one item exclusively.

For the evaluation, we first build a cost model to compare two approaches
regarding operating cost and storage overhead. We then instantiate the cost
model experimentally.

6.1 Cost Model

Let C denote a set of Smart Contracts that is deployed on the blockchain. Let
I ⊂ U denote the set of URIs that identify single item instances, for each of
which a Linked Pedigree exists. Let P ⊂ U denote the set of URIs that identify
single Linked Pedigree parts.

We define a function g : P → P that maps a Linked Pedigree part pk ∈ P to
another pj ∈ P, where k 6= j. Thus, function g appends the Linked Pedigree part
pk to a previous Linked Pedigree pj . This results in chains of Linked Pedigree
parts that we formally describe as n-tuples. A single chain, i. e. n-tuple, forms
an item’s Linked Pedigree. Be Λ the set of all Linked Pedigrees is Λ ⊂ Pn. An
item i’s Linked Pedigree λi ∈ Λ is then an n-tuple of the form:

λi = (p0, p1, . . . , pn) ∈ Pn

Each Linked Pedigree has an initial element p0 ∈ P, where

(g(pj) = p0, ∃pj ∈ P) ∧ (g(p0) = px, ¬∃px ∈ P)

and consists further of n-1 elements pk ∈ P, where

g(pk) = pk−1, ∀m ∈ {1, 2, . . . , n}

Further, we define h as the bijective mapping between an item’s URI and its
Linked Pedigree h : Λ → I. Last, we define the funtion e : I → C, which maps
an item i ∈ I to a Smart Contract cj ∈ C, since each item is validated by a
Smart Contract.

We thus defined three dimensions of our approach, which we use in the evalu-
ation: the set of deployed Smart Contracts C, the set of items I (Linked Pedigree
equivalent), and the n-tuples of Linked Pedigree parts (each forming a Linked
Pedigree):

{C, I,Pn}.
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6.2 Applying the Cost Model

Applying the model {C, I,Pn} to the question at hand, whether a MIC or a SIC
approach is preferable, we make the following assumptions:

The number of deployed Smart Contracts |C| is variable. Further, the number
of supply chain items is growing over time due to ongoing business:

lim
t→∞

|I| → ∞.

The same holds for the total number of Linked Pedigree parts, since

|Pn| = dim(Pn)× |I|,

each item having a Linked Pedigree with n elements. For our evaluation we will
assume a constant average size of a Linked Pedigree dim(Pn) = n.

In the following, we compare two approaches regarding operating cost and
storage overhead: The first one is a MIC approach with a constant |C| = 1. The
alternative is a SIC approach with an over time growing |C| = |I|.

Operating Cost. When deploying the Smart Contract or issuing a transaction,
the computing power lend from the network’s miners needs to compensated by
a transaction fee. Therefore, the usage of Smart Contracts is associated with
operating cost.

To compare the operating cost of a MIC approach and a SIC approach, let
da denote the average deployment cost for approach a. Let ra denote an item’s
average registration cost of for approach a, which is simply the cost of storing
the initial Linked Pedigree part. Let sa denote the average cost of storing a hash
of an intermediate Linked Pedigree part for approach a. Then for an approach
a, the cost function

pa(C, I) = da × |C|+ (ra + sa × n)× |I|, a ∈ {MIC,SIC}

applies. For the MIC approach, we have |C| = 1 resulting in the MIC cost function

pMIC(I) = dMIC + (rMIC + sMIC × (n− 1))× |I|.

For the SIC approach, we have |C| = |I| since there is a deployment of a Smart
Contract per item. This results in the SIC cost function

pSIC(I) = (dSIC + rSIC + sSIC × (n− 1))× |I|.

By comparing the two cost functions, we can see that a growing |I| leads to
higher operating cost for a SIC approach due to deployment cost typically being
far greater than function execution cost. So, an increasing number of supply
chain items |I| favours a MIC approach.

Further, equating both cost functions pMIC(I) = pSIC(I) leads regarding
the number of supply chain items to

|I|∗(n) = dMIC

dSIC + (rSIC − rMIC) + (n− 1)(sSIC − sMIC)
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with |I|∗(n) being the number of supply chain items, where both approaches
are at equal operating cost, dependent on the number of parts in a Linked
Pedigree. |I|∗(n) shows that the more parts form a Linked Pedigree instance,
i. e. the greater n, the less desirable is a MIC deployment due to the slightly
lower storing cost of a SIC.

For our implementation, the following estimated18 gas cost apply:

dMIC = 1, 065, 000 ; rMIC = 95, 000 ; sMIC = 185, 000

dSIC = 750, 000 ; rSIC = 80, 000 ; sMIC = 170, 000

These estimated gas costs lead to

|I|∗(n) = 1, 065, 000
750, 000 + 15, 000× n

Here, n = 50 is the vertical asymptote of |I|∗(n), meaning that for a Linked
Pedigree length of less than 50 parts per single Linked Pedigree a MIC-based
approach outperforms a SIC-based one.

Storage Overhead. When deploying a Smart Contract, the Smart Contract’s
code is stored on the distributed ledger. Every network participant with a full
node19 stores therefore a copy of that Smart Contract’s code.

To formally compare the storage overhead of a MIC approach and a SIC ap-
proach, let sa denote the storage space needed per Smart Contract for approach
a. Let u denote the storage space needed per URI (item plus Linked Pedigree
part), which is independent of the approach taken. Let further h denote the
storage space needed per hash, which is also independent of the approach taken.
Then for an approach a, the following storage overhead function applies for one
network participant:

oa(C, I,Pn) = sa × |C|+ u× (|I|+ |Pn|) + h× |Pn|, a ∈ {MIC,SIC}.

When omitting approach independent variables, one network participant’s stor-
age space overhead function for deployed Smart Contracts remains

ôa(C) = sa × |C|, a ∈ {MIC,SIC}.

For our (granted simple) implementation, the Smart Contracts lead to the
following (in bytes):

sMIC = 3, 300 ; sSIC = 2, 300

Obviously, for our implementation a MIC approach is superior to a SIC approach
already for only two supply chain items.
18 Estimates for URIs of 100 characters length.
19 As opposed to a light node, which only stores a flat copy, i. e. hash values, of the

distributed ledger.
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7 Discussion

Applying the cost model on operating cost and storage overhead, we show that
using network wide MIC is economically preferable as opposed to using a SIC if
we consider networks with average supply chain length below 50. Above 50, the
cost of an additional SIC, including deployment and Linked Pedigree storing, is
smaller than the overall cost of storing an additional Linked Pedigree in a MIC.

There may be special use cases, where deploying multiple Smart Contract in-
stances may be desirable in general, e. g. when the Smart Contracts are required
to interact with each other or when functionality does not fit all participants’
needs. With that, a SIC-based seems to be more flexible than a MIC-based.
However, also in a MIC-based deployment, updates can be performed, yet they
then need to appeal to the entire user base.

It is then in any case the obligation of the business partners to agree on
which Smart Contract instance to use. Especially in large supply chains, this
might cause significant overhead cost. Therefore, proposing a standard Smart
Contract, that is already deployed and ready for usage, might facilitate business
making in the network.

8 Summary and Conclusion

We presented an approach to verify the integrity of hyperlinked information
using Linked Data and Smart Contracts, where Linked Data is used to store
data off the chain. We showed a protocol for the verification in the presence of
the transfer of physical goods, outlined the technical aspects of our approach and
evaluated our approach using a cost model we developed. The implementation
of our approach can be found online20.

We see wide application possibilities of our approach in decentrally organised
logistics networks with many participants of small size who desire on-premise
data storage and acces control. As our presented approach allows for verifying
information published as Linked Data, we contribute to the often neglected layer
trust of the semantic web stack [13].
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