

Tutorial on Distributed Knowledge Graphs for the Web of Things, Part IV: Agents and the Cognitive Loop

Tobias Käfer (KIT) and Andreas Harth (FAU) Tutorial @ 10th International Conference on the Internet of Things (IoT), 2020

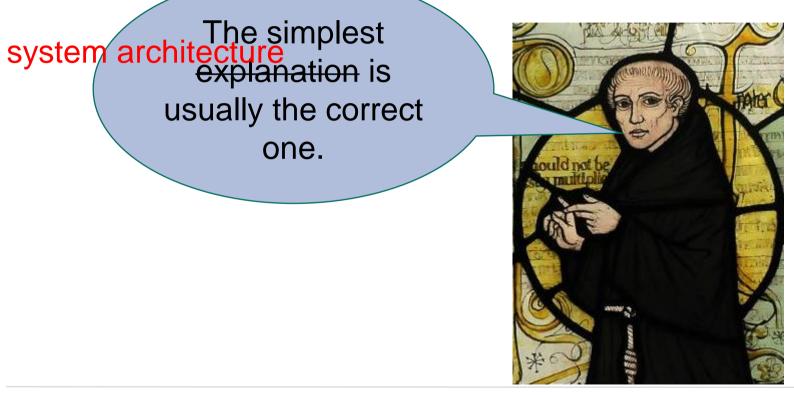
http://harth.org/andreas/foaf#ah

Karlsruhe Institute of Technology (KIT); Fraunhofer IIS-SCS; Friedrich-Alexander University Erlangen-Nuremberg (FAU)

http://go.wiwi.kit.edu/togwot

Agenda

Web Architecture and Linked Data


- User Agents and Cognitive Architectures
- Query Processing User Agents
- Link Traversal Query Processing User Agents

Summary

Execution Environment

- How to represent queries?
- How to represent behaviour?
- Where should queries (and behaviour) be executed?
- Not in the cloud!
- Need a (small and elegant) execution environment...

William of Ockham, 1287-1347

Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things. Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.

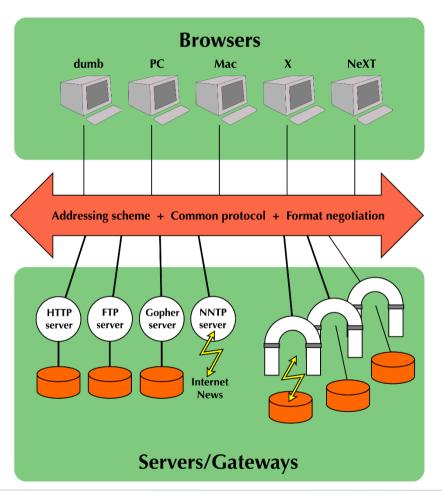
http://go.wiwi.kit.edu/togwot

Keep It Simple

5

The web is a very simple (but scalable) hypertext system

- Tim Berners-Lee's paper to a hypertext conference was only accepted as a poster
- RDF is a very simple knowledge representation language
- RDFS provides only very few modelling primitives
- Schema.org provides a fixed vocabulary
- Operational agent-oriented programming...
 - Yoav Shoham, Agent-Oriented Programming. Artificial Intelligence, 1993
- …instead of Situation Calculus
 - J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artificial intelligence. In: Machine Intelligence, 4:463–502. Edinburgh University Press, 1969


If you want, layer more complex things on top later

Web Architecture

- URI: RFC 1630 (1994), now RFC 3986
- HTTP: RFC 1945 (1996), now RFC 7230, 7231, 7232, 7234, 7235

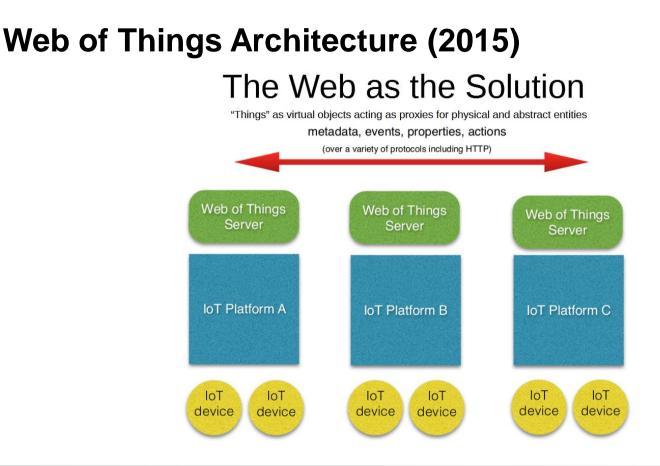
5 October 2020

https://www.w3.org/ DesignIssues/diagrams/ history/Architecture_crop.png Redrawn from an image from 1990

Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things. Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.

http://go.wiwi.kit.edu/togwot

Linked Data Architecture (2009)



https://www.w3.org/2009/Talks/0204-ted-tbl/#(7)

Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things. Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.

http://go.wiwi.kit.edu/togwot

7 5 October 2020

https://www.w3.or g/2015/05/wotframework.pdf

Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things. Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.

http://go.wiwi.kit.edu/togwot

Linked Data Principles: Two Perspectives

Data Consumer (User Agent)

1. Assume URIs as names for things. \checkmark

- 2. User agents look up HTTP URIs. ✓
- User agents process RDF/RDFS documents containing useful information and provide the ability to evaluate SPARQL queries.
- User agents can discover more things via accessing links to other URIs. ×

1. Coin URIs to name things.

Data Publisher (Server)

- 2. Use a HTTP server to provide access to documents. ✓
- Upon receiving a request for a URI, the server returns useful information (about the URI in the request) in RDF and RDF Schema. ✓
- The "useful information" the server returns in the RDF document includes links to other URIs (on other servers). ✓

Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things. Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.

Agenda

Web Architecture and Linked Data

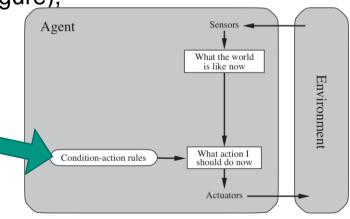
User Agents and Cognitive Architectures

- Query Processing User Agents
- Link Traversal Query Processing User Agents
- Summary

Examples of Linked Data User Agents

- Temperature recorder (for temperature of room, building, area...)
- Temperature display (for temperature of room, building, area...)
- Thermostat (for room temperature)
 - Setting temperature depending on who is in the room
- Heat alarm (for temperature of room, building, area...)
- Distance alarm (for theft detection)
- ... (your ideas?)

WoT "Recipes" or IFTTT "Applets" provide similar functionality

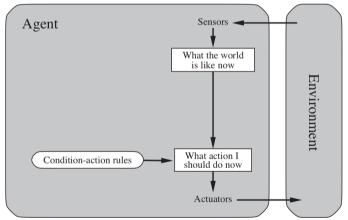

Cognitive Architectures

SOAR (initially: State, Operator, Apply, Result),

- ACT-R (Adaptive Control of Though Rational)
- Goal: to create "intelligent agents"
- In the tutorial, we start with user agents that are
 - simple reflex agents" (Russel & Norvig, see figure),
 - aka "tropistic agents" (Genesereth & Nilson)
- We explain how to use rules to control the agent's behaviour

12

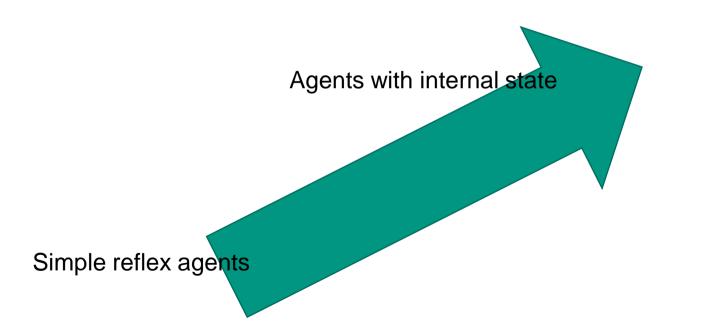
Russel and Norvig, Artificial Intelligence – A Modern Approach, Third Edition, 2010



Towards Simple Agents On The Web

- Can we start with a simple "Hello World" scenario for agents on the web?
- Agents: Query processing on live data
 Server: Based on a (read-only) Linked Data interface to sensors
- Agents: Then, add condition-(read)action rules to specify link traversal
- Server: Next, provide a Read-Write interface to sensors and actuators
- Agents: And add condition-(read-write) action rules

13


Simple Reflex Agent

Russel and Norvig, Artificial Intelligence – A Modern Approach, Third Edition, 2010

Increasing Agent Complexity

Agents with goals

Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things. Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.

http://go.wiwi.kit.edu/togwot

Simple Reflex User Agents Layer Cake

User Agent

Server/Environment

Read/Write Linked Data User Agents

Adding Unsafe HTTP Methods Read-Write Linked Data

Link-Following User Agents

Query Processing User Agents URI + HTTP + RDF (read-only) Linked Data

15 5 October 2020

Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things. Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.

http://go.wiwi.kit.edu/togwot

Agenda

- Web Architecture and Linked Data
- User Agents and Cognitive Architectures
- Query Processing User Agents
- Link Traversal Query Processing User Agents
- Summary

SPARQL FROM and FROM NAMED

Definition (Named Graph, RDF Dataset) Let G be the set of RDF graphs and U be the set of URIs. A pair $\langle g, u \rangle \in G \times U$ is called a named graph. An RDF dataset consists of a (possibly empty) set of named graphs (with distinct names) and a default graph $g \in G$ without a name.

We assume the graph names are also addresses to locations with RDF documents.

17 5 October 2020 Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things. Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.

Dave Beckett's roqet

18

- SPARQL processors operate on RDF datasets
- Many SPARQL processors operate on local RDF datasets
- A SPARQL "database", to which you first import your data and then pose queries
- Instead, we can use a query processing user agent
- E.g., roqet (http://librdf.org/rasqal/roqet.html) (for years)
- roqet dereferences the URIs of the graphs in the RDF dataset during query time
- Possible to access current data and evaluate a query over the current data

Algorithm: Query Processing User Agent

Input: Query (as SPARQL algebra expression)
 Output: Query results

Construct RDF dataset for local processing from URIs in Query
 Evaluate SPARQL algebra expression over local RDF dataset
 Return query results

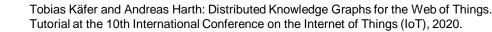
Algorithm: Agent Loop

- ¹ **input**: integer *delay*
- ² **output**: number of iterations
- t := 0

7

8

- **while** termination condition/criteria not true:
- ⁵ access data, evalute queries...
- 6 t := t + 1


- output results (datasets, query results, request/response information...) wait delay milliseconds
- 9 return t

SPARQL Query

Return true if beacon 0 is a certain distance away from the Tessel (approximating distance via RSSI value):

PREFIX ssn: <http://www.w3.org/ns/ssn/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

```
ASK
FROM <http://tessel2.lan/ble>
WHERE {
    <http://tessel2.lan/beacons/0#id> ssn:hasProperty ?prop .
    ?prop ssn:hasValue ?y .
    FILTER ((xsd:integer(?y)) > -60)
}
```


http://go.wiwi.kit.edu/togwot

(accent

Agenda

- Web Architecture and Linked Data
- User Agents and Cognitive Architectures
- Query Processing User Agents
- Link Traversal Query Processing User Agents
- Summary

4: Links to Other URIs (Recap)

A User Agent performing a HTTP GET on http://tessel.lan/ leads to:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix : <http://example.org/woto#> .

A HTTP GET on http://tessel.lan/beacons/ leads to:

@prefix : <http://example.org/woto#> .

```
<#id> :hosts <0#id> , <1#id> , <2#id> , <3#id> .
```

3: Provide Useful Information in RDF (Recap)

A User Agent performing a HTTP GET on http://tessel.lan/beacons/3#id leads to:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix : <http://example.org/woto#> .

24

(accent

Link Traversal User Agent Loop

- 1. The user agent starts its interaction based on a specified seed URI.
- 2. The user agent performs HTTP requests¹ on URIs and parses the response message.
- 3. Based on the response, the user agent has the choice as to which URIs to dereference next.
- 4. The user agent decides which link(s) to follow and initiates a new request/new requests.

¹We restrict HTTP requests to GET requests for now.

- Follow one link to arrive at a path through the web of information resources (e.g., depth-first search)
- Follow all links to arrive at a tree of information resources (e.g., breadth-first search)

How to Specify Which Links to Traverse?

Alternatives:

Function that maps current state to additional requests

- Implicitly encoded in the algorithm/system
- Encode the function using rules

Request Rule Abstract Syntax

Definition (Request Template Pattern) A request template pattern is a HTTP request, in which the start line S consists of a tuple $\langle M, t, V \rangle$, where M is the HTTP method, $t \in U \cup V$ is the request target, which can be a URI or variable, and V is the HTTP version.

Definition (Request Rule) Let *q* be a graph pattern and *r* a request template. A request rule is a pair $\langle q, r \rangle$ and has the form $\{q\} \Longrightarrow \{r\}$. All variables in *r* must also occur in *q* (the rule is called safe).

Example Traversal Rules

```
@prefix http: <http://www.w3.org/2011/http#> .
@prefix httpm: <http://www.w3.org/2011/http-methods#> .
@prefix : <http://example.org/woto#> .
```

Run with Linked Data-Fu, http://linked-data-fu.github.io/, Steffen Stadtmüller, Sebastian Speiser, Andreas Harth, Rudi Studer. "Data-Fu: A Language and an Interpreter for Interaction with Read/Write Linked Data". WWW 2013, Rio de Janerio, Brasil.

Link Traversal Query Processors

- Hartig et al. ISWC 2009
 - Index nested loops joins
 - Iterator model (bolted on top of ARQ/Jena)
- Harth et al. WWW 2010
 - Repeated evaluation
 - Improve source index over time
- Ladwig and Tran ISWC 2010
 - Architecture for link-traversal query processor (push, SHJ)
 - But no recursion

5 October 2020

29

- Fionda, Gutierrez and Pirro WWW 2012 (also: NautiLOD)
 - No notion Information Resource Graph
 - Function calls on results (no REST state manipulation)
 - But: recursion on graph traversal paths
- Hartig and Perez 2016: LDQL
 - Language to specify link traversal
 - Keep link traversal specification and query specification separate (as in Harth et al. WWW 2010)

Link Traversal Query Processing User Agent

- Input: Query (as SPARQL algebra expression), Link traversal specification
- Output: Query results
- Construct RDF dataset for local processing from Link traversal specification
- Evaluate SPARQL algebra expression over local RDF dataset

Return query results

Loop: do repeated query evaluation

Agenda

- Web Architecture and Linked Data
- User Agents and Cognitive Architectures
- Query Processing User Agents
- Link Traversal Query Processing User Agents
- Summary

Summary

- The agent metaphor is attractive for deployment on the (Semantic) Web, also in scenarios around Internet of Things and Industry 4.0
- Agents can operate in a decentralised environment without the need for centralised components
- We have presented how single machine agents can operate in a Linked Data environment
- We use SPARQL for specifying queries, and a rule-based language for specifying link traversal
- With the foundations in place, we can move on to more sophisticated types of agents

32 5 October 2020 Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things. Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.