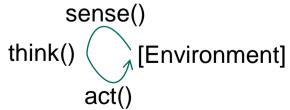


Tutorial on Distributed Knowledge Graphs for the Web of Things, Part VII: Executing RW Linked Data Agents

Tobias Käfer (KIT) and Andreas Harth (FAU) Tutorial @ 10th International Conference on the Internet of Things (IoT), 2020

Karlsruhe Institute of Technology (KIT); Fraunhofer IIS-SCS; Friedrich-Alexander University Erlangen-Nuremberg (FAU)


How Far Away Are We From Al Agents on the Web of Things?

- Cognitive loop:
 - while true:
 - sense()
 - think()
 - act()

2

- Read-Write Linked Data gives us:
 - sense() and act() to interact with distributed sources
 - Knowledge Graphs to describe data

Russell / Norvig's
Agent Layer Cake [1]IngredientsAgents with goalsCapability descriptionsAgents with internal stateState MaintenanceSimple reflex agentsExecution semantics(Describe Perception)Data model(Perception/action means)Interaction

[1] Russell and Norvig: "Artificial Intelligence – A Modern Approach". Prentice Hall (1995).

5 October 2020 Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things. Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.

Read-Write Linked Data processing with IoT Devices Web of Things

Level	Foundationa	Foundational approaches / categories										
Capability description	Input, Output (for automate		-	Affordance (for manual composition)								
Composition description	Rules	BPEL*	Pi cal- culus	-	etri ets	(Temporal) logic)	Unformalised Implementation				
Execution Semantics	ASM		LTS					rmalised ementation				
Data model	Graph (RDF)				Nested (JSON, XML)			ML)				
Interaction	REST	1	Arbitrary functio	ns		Event/push		Blackboard				
*Semantics of BPE	L have been given	eg. in Petri	Nets and ASMs, but I	Petri	Nets are	e also used to des	scribe co	ompositions				
	L have been given	eg. in Petri	•	Petri		e also used to des	scribe co					

3 5 October 2020

Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things. Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.

Read-Write Linked Data processing with IoT Devices Web of Things

Level	Foundationa	Foundational approaches / categories									
Capability description	Input, Output (for automate				Affordance (for manual composition)						
Composition description	Rules	BPEL			tri ts	(Temporal) logic	Unformalised Implementation				
Execution Semantics	ASM		LTS		Situation Unformalised Calculus Implementation						
Data model	Graph (RDF))			Nested (JSON, XML)						
Interaction	REST	ŀ	Arbitrary functio	ns		Event/push		Blackboard			

Read-Write Linked Data processing with IoT Devices Web of Things

Level	Foundational approaches / categories									
Capability description	Input, Output (for automate			Affordance (for manual composition)						
Composition description	Rules	BPEL			ri S	(Temporal) logic		Unformalised Implementation		
Execution Semantics	ASM		LTS		Situation Unformalised Implementation					
Data model	Graph (RDF))				Nested (JSON, XML)				
Interaction	REST	1	Arbitrary functio	ons		Event/push		Blackboard		

IoT Platforms

Level	Foundationa	Foundational approaches / categories									
Capability description	Input, Output (for automate	-		Affordance (for manual composition)							
Composition description	Rules	BPEL*			tri ts	(Temporal) logic		Unformalised Implementation			
Execution Semantics	ASM		LTS					malised mentation			
Data model	Graph (RDF))		Nested (JSON, XML)							
Interaction	REST	ŀ	Arbitrary functio	ons		Event/push		Blackboard			

OWL-S and WSMO

Semantic Web Service Description Language Stacks

Level	Foundationa	Foundational approaches / categories									
Capability description	Input, Output (for automate	•	-	Affordance (for manual composition)							
Composition description	Rules	BPEL*			etri ets	(Temporal) logic		Unformalised Implementation			
Execution Semantics	ASM		LTS		Situation Unformalised Calculus Implementation						
Data model	Graph (RDF)	I				Nested (JSC	ON, XI	ML)			
Interaction	REST		Arbitrary function	ons		Event/push		Blackboard			
*Semantics of BPE	L have been given	eg. in Petri	Nets and ASMs, but	Petri	Nets are	e also used to des	scribe co	ompositions			

Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things. Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.

http://go.wiwi.kit.edu/togwot

5 October 2020

Hydra and Schema.org Potential Actions

Affordance descriptions

cf. Web of Things Actions/Properties/Events

Level	Foundationa	Foundational approaches / categories									
Capability description	Input, Output (for automate			Affordance (for manual composition)							
Composition description	Rules	BPEL*			ri S	(Temporal) logic		Unformalised Implementation			
Execution Semantics	ASM		LTS		Situation Unformalised Calculus Implementation						
Data model	Graph (RDF))		Nested (JSON, XML)							
Interaction	REST	ST Arbitrary functions				Event/push		Blackboard			

RESTdesc [1]

- Aim: Automated service composition and composition execution in the presence of hyperlinks in HTTP responses
- Composition problem:
 - Initial knowledge
 - <#r> :isOn false .
 - API descriptions:
- { preconditions }=>{ HTTP-request.postconditions }.
 - Precondition, Postcondition: ~ BGP; Postcondition ~ HTTP response's body
 - HTTP-Request: (Method, URI + optional parameters)
 - Optional: eg. body: URIs or literals
 - Goal specification
 - { <#r> :isOn true }=>{<#r> :isOn true } .
 - Background knowledge, eg. ontologies

```
Sample API description:
@prefix : <http://example.org/>.
@prefix http: <http://www.w3.org/2011/http#>.
```

[1] Verborgh, Steiner, Van Deursen, Coppens, Vallés, Van de Walle: "Functional descriptions as the bridge between hypermedia APIs and the Semantic Web". In Proc. 3rd International Workshop on RESTful Design (WS-REST) (2012)

}.

12 5 October 2020 Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things. Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.

RESTdesc Algorithm [1]

- 1) Start an N3 reasoner to generate a pre-proof for (R, g, H, B).
 - a) If the reasoner is not able to generate a proof, halt with failure.
 - b) Else scan the pre-proof for applications of rules of R, set the number of these applications to n_{pre}

bot before an H

- 2) Check n_{pre} :
 - a) If $n_{pre} = 0$, halt with success.
 - b) Else continue with 3).
- 3) Out of the pre-proof, select a sufficiently specified HTTP request description which is part of the application of a rule $r \in R$.
- 4) Execute the described HTTP request and parse the (possibly empty) server response to a set of ground formulas *G*.
- 5) Invoke the reasoner with the new API composition problem $(R, g, H \cup G, B)$ to produce a post-proof.
- 6) Determine n_{post} :

13

- a) If the reasoner was not able to generate a proof, set $n_{post} \coloneqq n_{pre}$.
- b) Else scan the proof for the number of inference steps which are using rules from R and set this number of steps to n_{post} .
- 7) Compare n_{post} with n_{pre} :
 - a) If $n_{post} \ge n_{pre}$, go back to 1) with the new API composition problem $(R \setminus \{r\}, g, H, B)$.

Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.

b) If $n_{post} < n_{pre}$, the post-proof can be used as the next pre-proof. Set $n_{pre} \coloneqq n_{post}$ and continue with 2) [1] Verborgh, Arndt, Van Hoecke, De Roo, Mels, Steiner, Gabarró: "The pragmatic proof: Hypermedia API composition and execution". *Theory and Practice of Logic Programming*, 17(1), (2017)

5 October 2020 Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things.

Classifying RESTdesc

More than mere affordances, but not full IOPE

Level	Foundationa	oundational approaches / categories									
Capability description	Input, Output (for automate	•			-	Affordance (for manual composition)					
Composition description	Rules	BPEL*				etri ets	(Temporal) logic		Unformalised Implementation		
Execution Semantics	ASM		LTS			Situation Unformalised Calculus Implementation					
Data model	Graph (RDF)	1				Nested (JSON, XML)					
Interaction	REST		Arbitra	ry functio	ns		Event/push		Blackboard		

*Semantics of BPEL have been given eg. in Petri Nets and ASMs, but Petri Nets are also used to describe compositions

Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things. Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.

http://go.wiwi.kit.edu/togwot

14 5 October 2020

ASM4LD [0]

A Model of Computation for Read-Write Linked Data [0] Operational Semantics for the Linked Data-Fu Language [1]

Level	Foundationa	Foundational approaches / categories										
Capability description	Input, Output (for automate	•		•		Affordance (for manual composition)						
Composition description	Rules	BPEL*		Pi cal- culus		etri ets	(Temporal) logic		Unformalised Implementation			
Execution Semantics	ASM		IJ	TS		SituationUnformalisedCalculusImplementation						
Data model	Graph (RDF)						Nested (JSON, XML)					
Interaction	REST		Arbi	itrary function	ns		Event/push		Blackboard			
[0] Käfer & Harth: Rule-ba							ite linked data W/W/M	/ 2013				

[1] Stadtmüller, Speiser, Harth, Studer: Data-Fu: a language and an interpreter for interaction with read/write linked data. WWW 2013

Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things. Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.

ASM4LD [0]

Aim: Execution of agent specifications on Read-Write Linked Data

What is the world like no

> Action to be done

think():

NVIDONM

RULES

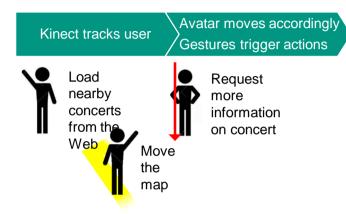
- Inspired by Simple Reflex Agents [1]
- Based on:
 - Abstract State Machines [2]
 - Model-theoretics semantics of RDF
 - Message semantics of HTTP
- Cognitive loop
 - + Fixpoint loop for reasoning
 - + Fixpoint loop for link following

[0] Käfer & Harth: Rule-based Programming of User Agents for Linked Data. LDOW @WWW 2018
[1] Russell & Norvig: Artificial Intelligence – A Modern Approach. Prentice Hall (1996)
[2] Gurevich:. "Evolving algebras 1993: Lipari guide." Specification and validation methods (1995)

AGEN

ondition-action (if-then) rules MINELTA

sense(): HTTP GET


act(): HTTP PUT/POST/DELETE **Require**: assertions > Graph **Require**: rules > Derivation and request rules var data, oldData: set<triple> var fixpointReached: Boolean var unsafeRequests: set<request> while true do ▷ Loop of the ASM steps unsafeRequests.clear() data.clear() data.add(assertions) **repeat** \triangleright Loop for determining the fixpoint and the update set fixpointReached <- true for rule : rules do if rule.matches(data) then oldData = data.copy()if rule.type==derivation then data.add(rule.match(data).data) **else** \triangleright So the rule must be an interaction rule if rule.match(data).request.type==GET then data.add(rule.match(data).request.execute()) else unsafeRequests.add(rule.match(data).request) end if end if if ! data.copy().remove(oldData).isEmpty() then fixpointReached <- false end if end if end for until fixpointReached for request : unsafeRequests do > Enacting the update set request.execute() end for end while

Algorithm to combine fixpoint calulation for forward-chaining reasoning, and link following, with the cognitive loop

17 5 October 2020

Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things. Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.

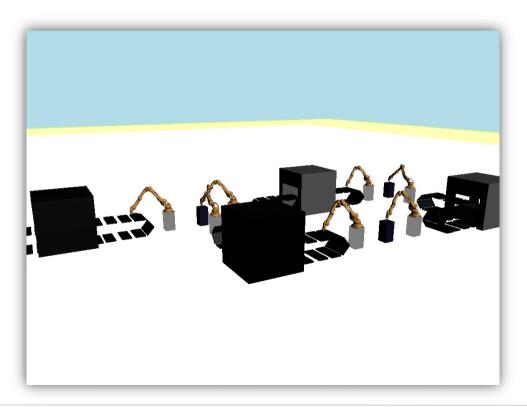
Integration of Distributed Systems using Linked Data: Example: a Virtual Reality System



- We encoded in Linked Data-Fu rules:
 - Movement of the avatar according to Kinect data
 - Detection of user gestures

5 October 2020

18


- Movement of the map according to gestures
- Loading of concert data from the web
- Data integration between VR RWLD API, concert LD API, Kinect LD API
- Execution at Kinect sensor refresh rate (30Hz)

Keppmann, Käfer, Stadtmüller, Schubotz, Harth: "High Performance Linked Data Processing for Virtual Reality Environments". P&D ISWC 2014.

Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things. Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.

Video: Manufacturing Control (2020)

5 October 2020 19

Tobias Käfer and Andreas Harth: Distributed Knowledge Graphs for the Web of Things. Tutorial at the 10th International Conference on the Internet of Things (IoT), 2020.